Name: Date: Period:

Parent Graphs

- 1. Pg 426 #6 13
- 2. Pg 426 427 #14 31 Column, #36 54 Column
- 3. Pg 426 427 #15, #17 23 Column, #26 32 Column, #37 55 Column
- 4. Pg 426 427 #18 24 Column, #33 35 All, #38 56 Column
- 5. Pg 987-988 #1-16 column (need graph paper)
- 6. Pg 987-988 #2-17 column (need graph paper)
- 7. Pg 434-435 #15-21 odd; 22-40 column (need graph paper)
- 8. Pg 434-435 #16-20 even; 23-41 column (need graph paper)
- 9. Pg 543-544 #11-38 column (need graph paper)
- 10. Pg 543-544 #12-39 column (need graph paper)
- 11. Chapter Review

7.4 Inverse Functions (I/4)

Inverse Relation:

The domain of the inverse relation is the range of the original relation and that the range of the inverse relation is the domain of the original relation.

Original relation -2 1 2 -1 0 Х -2 4 -4 У Inverse relation -2 Х 4 2 0 -4 2 -2 -1

The graph of an inverse relation is the *reflection* of the graph of the original relation. The line of reflection is y=x.

To find the inverse of a relation that is given by an equation in x and y, switch the roles of x and y and solve for y (if possible).

The inverse of f is denoted f^{-1} and is read "f inverse."

The Horizontal Line Test

If no horizontal line intersects the graph of a function f more than once, then the inverse of f is itself a function.

* The inverse of every non-horizontal linear function is also a function*

E1. Find an equation for the inverse of the relation y = 2x - 4 P1. Find an equation for the inverse of the relation y = -3x + 6

E2. Verify that f(x) = 2x - 4 and $f^{-1} = \frac{1}{2}x + 2$ are inverses

P2. Verify that f(x) = -3x + 6 and $f^{-1} = -\frac{1}{3}x + 2$ are inverses

E3. Find the inverse of the function $f(x) = x^2, x \ge 0$.

P3. Find the inverse of the function $f(x) = x^5$.

E4. Consider the function $f(x) = \frac{1}{2}x^3 - 2$. Determine whether the inverse of f is a function. Then find the inverse.

P4. Consider the function $f(x) = 2x^2 - 4$. Determine whether the inverse of f is a function. Then find the inverse.

Appendix 1 (Pg 985), 7.5 and 9.2 (include constant, linear, abs value, quad, cubic, sq root, cube root, quartic, reciprocal/rational

Parent Graphs And Functions

In mathematics, you see certain graphs over and over again. For that reason, these original, common functions are called *parent graphs*, and they include graphs of quadratic functions, square roots, absolute values, cubics and cube roots. We are going to learn about ten such graphs.

	Constant Function
Equation:	Equation:
Domain: Range: Special Characteristics: x-intercepty-intercept	Domain: Range: Special Characteristics: x-intercepty-intercept
Vertical Line Graph	Quadratic Function
	I •
Equation: Domain: Range: Special Characteristics:	Equation: Domain: Range: Special Characteristics:

Transforming Functions

Knowing how a function can be transformed makes it easier to graph the function.

Rigid Transformations:

1. Horizontal Shifts

To shift c units to the <u>right</u>, subtract a number inside the function: $y = (x - 4)^2$

To shift c units to the <u>left</u>, add a number inside the function: $y = (x + 4)^2$

2. Vertical Shifts

To shift c units <u>up</u> add a number outside the function: $y = x^2 + 4$

To shift c units **down** subtract a number outside the function: $y = x^2 - 4$

You can combine shifts by adding/subtracting numbers inside and outside the function.

3. Reflections (over the x-axis or y-axis)

A reflection of a graph flips the graph over the x-axis or y-axis by putting a negative in front of the function or inside the function.

Reflections over the **x-axis** have a negative in front of the function: $y = -x^2$

Reflections over the **y-axis** have a negative inside the function: $y = (-x)^2$

Nonrigid Transformations:

Nonrigid transformations are those that cause distortions.

Vertical stretch a graph you multiply outside the function by a number greater than 1:

$$y = 2|x - 3|$$

Vertical shrink a graph you multiply outside the function by a fraction less than 1 and greater than 0: $y = \frac{1}{2}|x-3|$

Horizontal stretch a graph you multiply inside the function by a fraction less than 1 and greater than 0: $y = | \frac{1}{2}(x-3)|$

Horizontal shrink a graph you multiply inside the function by a number greater than 1:

$$y = |3(x - 3)|$$

Steps for Multiple Transformations

Use the following order to graph a function involving more than one transformation:

- 1. Horizontal Translation
- 2. Stretching or shrinking
- 3. Reflecting
- 4. Vertical Translation

E1. Tell whether the function represented by the graph has a parent function of y=|x|, $y=\sqrt{x}$, $y=\sqrt{y}$ x^2 , or $y=2^x$. Write the function represented by the graph, using the graph of the parent function.

Graph the function by translating the graph of its parent function.

E2.
$$y = -(x-4)^3 + 1$$

E3.
$$y - 2 = (x + 1)^2$$

Domain:

Range:

Domain:

Range:

x-intercept:

x-intercept:

y-intercept:

y-Intercept:

Minimum:

Minimum:

Maximum:

Maximum:

E4.
$$y = \frac{1}{2}(x+2)^4 - 1$$

E5.
$$y + 3 = -|x + 2|$$

Domain:	 Domain:	
Range:	 Range:	
x-intercept:	x-intercept:	
y-intercept:	 y-Intercept:	
Minimum:	Minimum:	
Maximum:	Maximum:	

E6.
$$y = -3\sqrt{x-2} + 1$$

E7 .
$$y = 3\sqrt[3]{x+2} - 1$$

Domain:	 Domain:	
Range:	Range:	
Nange.	 Natige.	
x-intercept:	 x-intercept:	
y-intercept:	 y-Intercept:	
Minimum:	 Minimum:	
Maximum:	Maximum:	

E8. Graph:
$$y = \frac{1}{x+1} - 1$$

E9. Graph: y = -2|2x - 1| + 1

Domain:	 Domain:
Range:	 Range:
x-intercept:	 x-intercept:
y-intercept:	 y-Intercept:
Minimum:	 Minimum:
Maximum:	 Maximum:
Asymptote:	Asymptote:

Warm-ups

Use the provided spaces to complete any warm-up problem or activity		
Date:	Date:	

Warm-ups

Use the provided spaces to complete any warm-up problem or activity		
Date:	Date:	
Date:	Date:	